Matrix Order in Bohr Inequality for Operators

نویسندگان

  • MASATOSHI FUJII
  • HONGLIANG ZUO
  • M. FUJII
  • H. ZUO
چکیده

The classical Bohr inequality says that |a+b| ≤ p|a|+q|b| for all scalars a, b and p, q > 0 with 1 p + 1 q = 1. The equality holds if and only if (p− 1)a = b. Several authors discussed operator version of Bohr inequality. In this paper, we give a unified proof to operator generalizations of Bohr inequality. One viewpoint of ours is a matrix inequality, and the other is a generalized parallelogram law for absolute value of operators, i.e., for operators A and B on a Hilbert space and t 6= 0, |A−B| + 1 t |tA + B| = (1 + t)|A| + (1 + 1 t )|B|.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Hardy Inequality on Weighted Sequence Spaces

Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...

متن کامل

Bohr-Sommerfeld phases for avoided crossings

on the real line. Here Ĥ = (Ĥi,j)1≤i,j≤N is a matrix of semi-classical pseudodifferential operators of order 0 in 1 variable x with (Ĥi,j) ? = Ĥi,j. For applications, it will be important to consider the case where Ĥ = Ĥμ depends smoothly on a germ of parameters μ ∈ (R, 0). In our previous papers [5, 6], we derived normal forms near the eigenvalues crossings which allow to compute a local scatt...

متن کامل

A determinant inequality and log-majorisation for operators

‎Let $lambda_1,dots,lambda_n$  be positive real numbers such that $sum_{k=1}^n lambda_k=1$. In this paper, we prove that for any positive operators $a_1,a_2,ldots, a_n$ in semifinite von Neumann algebra $M$ with faithful normal trace that $t(1)

متن کامل

The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics

In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...

متن کامل

An Operator Extension of Bohr’s Inequality

T φ(At)dμ(t) for every linear functional φ in the norm dual A of A; cf. [3, Section 4.1]. Further, a field (φt)t∈T of positive linear mappings φ : A → B between C -algebras of operators is called continuous if the function t 7→ φt(A) is continuous for every A ∈ A. If the C-algebras include the identity operators, denoted by the same I, and the field t 7→ φt(I) is integrable with integral I, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010